ファラデーの法則と水の生成熱

. 実験目的

銅の電解精錬の原理を用いてファラデー定数を求める。また水酸化ナトリウム 水溶液の電気分解を行い,水の生成熱の測定を行う。

. 実験準備

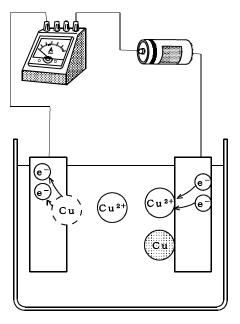
試薬:銅板,電解液,メタノール,1M水酸化ナトリウム水溶液,

器具:クリップ,リード線,ビーカー,電池,ドライヤー,電子天秤,直流電

流計,直流電圧計,スチロールコップ,白金電極,温度計

. 実験方法

< 実験 1 > ファラデーの法則


目の細かいサンドペーパーで磨き,電解液で数分間で電気分解し,水洗い・乾燥した銅板2枚の質量を電子天秤を用いて正確に測定する。

200㎡ ビーカーに電解液150㎡ を取り,電極ホルダーに の銅板を固定したものを浸し,乾電池1本と直流電流計を直列に接続する。

1.5 V の電圧で10分間電気分解を行う。そのさいに30秒ごとに電流計を読み,電流値を記録する。また両極における変化の様子を観察する。

時間がきたら電源を切り、注意して電極を取り出し、付着物が取れないように注意しながら軽く水洗いし、更にメタノールで洗いドライヤーの冷風で乾燥させ、電子天秤で質量を正確に測定する。

両極の極板の質量変化と,電流値と通電 時間から電気量を求める。

<実験2>水の生成熱

- 実験原理 -

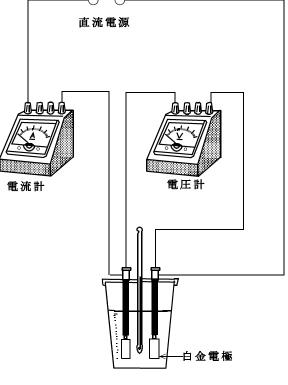
水酸化ナトリウム水溶液を電気分解して水素と酸素を生じるとき,電池の消費エネルギーと発熱量(溶液の温度が上昇する)の差が水を分解するのに必要なエネルギーになる。水の分解と生成は逆反応であるから,この差を水素1molあたりに換算したものが水の生成熱になる。

電池の消費エネルギー(J) =

電気分解時の発熱量(J) =

電気分解時に流れた電気量(C) =

1M水酸化ナトリウム水溶液を 用意し,室温と同じにする。


スチロールコップを電子天秤にのせ,風袋を消去し,1M水酸化ナトリウム水溶液約70㎡を加えてその質量を正確にはかる。

スチロールコップに白金電極と 温度計を取り付け水酸化ナトリウム水溶液の温度を測定する。 右図のように電流計,電圧計, 電解装置を接続する。

3分間電気分解を行う。その際30秒ごとに水酸化ナトリウム水溶液の温度,電流,電圧を測定する。

電気分解が終了したら水酸化ナ トリウムを取り替え,再度 ~ の実験を行う。

スチロールコップに一定量の水を取り、電極と温度計を取り付け,さらに二クロム線を入れ,電気を流す。電流,電圧,時間を測定する。電池の消費電力と

水の温度上昇から容器の熱容量を求める。(今回は実施済み)

. 実験結果

< 実験 1 > ファラデーの法則

・極板の質量変化

	電気分解前	電気分解後	質量変化
陽極			
陰 極			

・電流(A)…電流と時間の関係をグラフにし,添付せよ。

問(秒)	30	60	90	120	150	180	210	240	270	300
電流										
睛(秒)	330	360	390	420	450	480	510	540	570	600
電流										

<実験2>水の生成熱

1 回日・水酸化ナトリウム水溶液の質量(

「凹目:小酸化プトリリム小浴液の負重() ョウ							₁温度変化		
時間(秒)	0	30	60	90	120	150	180)
NaOHの温度								平均電流	`
電流	0							· 平均電圧	J
電圧	0							十切电圧)

2 回目:水酸1	化ナトリ	リウムス	水溶液(の質量()	温度变化	
時間(秒)	0	30	60	90	120	150	180	温度変化 〔)
NaOHの温度								平均電流	`
電流	0)
電圧	0							平均電圧 〔)
. 考察 実験1 > ファラ ・両極における 陽極: 陰極: ・この実験の原	変化の	化学反			行われ	ている	が、紡	1以外の全屋	ЦĽ
・このまいのしてのようにして・測定した電流	除去さ	れるか	°o					以外の金属	IL C
・極板の質量変また誤差(%)						定数((C/mol)	を計算せよ	•
ファラデー 原因 (陰極:	定数() C	/mol	誤差() %	
ファラデー 原因	定数() C	/mol	誤差() %	

<

<実験2>水の生成熱…容器の熱容量(・電池の消費エネルギー(J)を求めよ。)J/K
1回目	2 回目
・温度上昇に費やされた熱量(J)を求めよ 1回目	 - こ。1M-NaOHの比熱を4.18(J/g・K)とする。 2 回目
・電気分解に費やされた電気量(C)を求め)よ。
1回目	2 回目
・以上をもとにして水の生成熱(kJ/mol):	を求め,熱化学方程式で表せ。
1回目	2 回目

. 反省と感想